Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Cloud Comput (Heidelb) ; 12(1): 79, 2023.
Article in English | MEDLINE | ID: covidwho-2312950

ABSTRACT

Cloud computing adoption has been increasing rapidly amid COVID-19 as organisations accelerate the implementation of their digital strategies. Most models adopt traditional dynamic risk assessment, which does not adequately quantify or monetise risks to enable business-appropriate decision-making. In view of this challenge, a new model is proposed in this paper for assignment of monetary losses terms to the consequences nodes, thereby enabling experts to understand better the financial risks of any consequence. The proposed model is named Cloud Enterprise Dynamic Risk Assessment (CEDRA) model that uses CVSS, threat intelligence feeds and information about exploitation availability in the wild using dynamic Bayesian networks to predict vulnerability exploitations and financial losses. A case study of a scenario based on the Capital One breach attack was conducted to demonstrate experimentally the applicability of the model proposed in this paper. The methods presented in this study has improved vulnerability and financial losses prediction.

2.
BMC Public Health ; 23(1): 404, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2285998

ABSTRACT

OBJECTIVE: To summarise the dynamic characteristics of COVID-19 transmissibility; To analyse and quantify the effect of control measures on controlling the transmissibility of COVID-19; To predict and compare the effectiveness of different control measures. METHODS: We used the basic reproduction number ([Formula: see text]) to measure the transmissibility of COVID-19, the transmissibility of COVID-19 and control measures of 176 countries and regions from January 1, 2020 to May 14, 2022 were included in the study. The dynamic characteristics of COVID-19 transmissibility were summarised through descriptive research and a Dynamic Bayesian Network (DBN) model was constructed to quantify the effect of control measures on controlling the transmissibility of COVID-19. RESULTS: The results show that the spatial transmissibility of COVID-19 is high in Asia, Europe and Africa, the temporal transmissibility of COVID-19 increases with the epidemic of Beta and Omicron strains. Dynamic Bayesian Network (DBN) model shows that the transmissibility of COVID-19 is negatively correlated with control measures. Restricting population mobility has the strongest effect, nucleic acid testing (NAT) has a strong effect, and vaccination has the weakest effect. CONCLUSION: Strict control measures are essential for controlling the COVID-19 outbreak; Restricting population mobility and nucleic acid testing (NAT) have significant impacts on controlling the COVID-19 transmissibility, while vaccination has no significant impact. In light of these findings, future control measures may include the widespread use of new NAT technology and the promotion of booster immunization.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Bayes Theorem , COVID-19/epidemiology , COVID-19/prevention & control , Africa/epidemiology , Asia
3.
Front Public Health ; 10: 876691, 2022.
Article in English | MEDLINE | ID: covidwho-2119660

ABSTRACT

As COVID-19 continues to impact the United States and the world at large it is becoming increasingly necessary to develop methods which predict local scale spread of the disease. This is especially important as newer variants of the virus are likely to emerge and threaten community spread. We develop a Dynamic Bayesian Network (DBN) to predict community-level relative risk of COVID-19 infection at the census tract scale in the U.S. state of Indiana. The model incorporates measures of social and environmental vulnerability-including environmental determinants of COVID-19 infection-into a spatial temporal prediction of infection relative risk 1-month into the future. The DBN significantly outperforms five other modeling techniques used for comparison and which are typically applied in spatial epidemiological applications. The logic behind the DBN also makes it very well-suited for spatial-temporal prediction and for "what-if" analysis. The research results also highlight the need for further research using DBN-type approaches that incorporate methods of artificial intelligence into modeling dynamic processes, especially prominent within spatial epidemiologic applications.


Subject(s)
COVID-19 , Humans , United States/epidemiology , Risk , Bayes Theorem , COVID-19/epidemiology , Artificial Intelligence , Indiana/epidemiology
4.
Comput Methods Programs Biomed ; 221: 106873, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1930819

ABSTRACT

BACKGROUND AND OBJECTIVE: COVID-19 severity spans an entire clinical spectrum from asymptomatic to fatal. Most patients who require in-hospital care are admitted to non-intensive wards, but their clinical conditions can deteriorate suddenly and some eventually die. Clinical data from patients' case series have identified pre-hospital and in-hospital risk factors for adverse COVID-19 outcomes. However, most prior studies used static variables or dynamic changes of a few selected variables of interest. In this study, we aimed at integrating the analysis of time-varying multidimensional clinical-laboratory data to describe the pathways leading to COVID-19 outcomes among patients initially hospitalised in a non-intensive care setting. METHODS: We collected the longitudinal retrospective data of 394 patients admitted to non-intensive care units at the University Hospital of Padova (Padova, Italy) due to COVID-19. We trained a dynamic Bayesian network (DBN) to encode the conditional probability relationships over time between death and all available demographics, pre-existing conditions, and clinical laboratory variables. We applied resampling, dynamic time warping, and prototyping to describe the typical trajectories of patients who died vs. those who survived. RESULTS: The DBN revealed that the trajectory linking demographics and pre-existing clinical conditions to death passed directly through kidney dysfunction or, more indirectly, through cardiac damage. As expected, admittance to the intensive care unit was linked to markers of respiratory function. Notably, death was linked to elevation in procalcitonin and D-dimer levels. Death was associated with persistently high levels of procalcitonin from admission and throughout the hospital stay, likely reflecting bacterial superinfection. A sudden raise in D-dimer levels 3-6 days after admission was also associated with subsequent death, possibly reflecting a worsening thrombotic microangiopathy. CONCLUSIONS: This innovative application of DBNs and prototyping to integrated data analysis enables visualising the patient's trajectories to COVID-19 outcomes and may instruct timely and appropriate clinical decisions.


Subject(s)
COVID-19 , Bayes Theorem , Humans , Intensive Care Units , Procalcitonin , Retrospective Studies , SARS-CoV-2
5.
Process Saf Environ Prot ; 159: 585-604, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1616707

ABSTRACT

Various unexpected, low-probability events can have short or long-term effects on organizations and the global economy. Hence there is a need for appropriate risk management practices within organizations to increase their readiness and resiliency, especially if an event may lead to a series of irreversible consequences. One of the main aspects of risk management is to analyze the levels of change and risk in critical variables which the organization's survival depends on. In these cases, an awareness of risks provides a practical plan for organizational managers to reduce/avoid them. Various risk analysis methods aim at analyzing the interactions of multiple risk factors within a specific problem. This paper develops a new method of variability and risk analysis, termed R.Graph, to examine the effects of a chain of possible risk factors on multiple variables. Additionally, different configurations of risk analysis are modeled, including acceptable risk, analysis of maximum and minimum risks, factor importance, and sensitivity analysis. This new method's effectiveness is evaluated via a practical analysis of the economic consequences of new Coronavirus in the electricity industry.

6.
Renew Sustain Energy Rev ; 151: 111574, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1454501

ABSTRACT

The novel coronavirus (COVID-19) is highly detrimental, and its death distribution peculiarity has severely affected people's health and the operations of businesses. COVID-19 has wholly undermined the global economy, including inflicting significant damage to the ever-emerging biomass supply chain; its sustainability is disintegrating due to the coronavirus. The biomass supply chain must be sustainable and robust enough to adapt to the evolving and fluctuating risks of the market due to the coronavirus or any potential future pandemics. However, no such study has been performed so far. To address this issue, investigating how COVID-19 influences a biomass supply chain is vital. This paper presents a dynamic risk assessment methodological framework to model biomass supply chain risks due to COVID-19. Using a dynamic Bayesian network (DBN) formalism, the impacts of COVID-19 on the performance of biomass supply chain risks have been studied. The proposed model has been applied to the biomass supply chain of a U.S.-based Mahoney Environmental® company in Washington, USA. The case study results show that it would take one year to recover from the maximum damage to the biomass supply chain due to COVID-19, while full recovery would require five years. Results indicate that biomass feedstock gate availability (FGA) is 2%, due to pandemic and lockdown conditions. Due to the availability of vaccination and gradual business reopenings, this availability increases to 92% in the second year. Results also indicate that the price of fossil-based fuel will gradually increase after one year of the pandemic; however, the market prices of fossil-based fuel will not revert to pre-coronavirus conditions even after nine years. K-fold cross-validation is used to validate the DBN. Results of validation indicate a model accuracy of 95%. It is concluded that the pandemic has caused risks to the sustainability of biomass feedstock, and the current study can help develop risk mitigation strategies.

7.
Future Gener Comput Syst ; 127: 334-346, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1433239

ABSTRACT

This study was aimed to discuss the predictive value of infectious disease dynamics model (IDD model) and dynamic Bayesian network (DBN) for scenario deduction of public health emergencies (PHEs). Based on the evolution law of PHEs and the meta-scenario representation of basic knowledge, this study established a DBN scenario deduction model for scenario deduction and evolution path analysis of PHEs. At the same time, based on the average field dynamics model of the SIR network, the dimensionality reduction process was performed to calculate the epidemic scale and epidemic time based on the IDD model, so as to determine the calculation methods of threshold value and epidemic time under emergency measures (quarantine). The Corona Virus Disease (COVID) epidemic was undertaken as an example to analyze the results of DBN scenario deduction, and the infectious disease dynamics model was used to analyze the number of reproductive numbers, peak arrival time, epidemic time, and latency time of the COVID epidemic. It was found that after the M1 measure was used to process the S1 state, the state probability and the probability of being true (T) were the highest, which were 91.05 and 90.21, respectively. In the sixth stage of the development of the epidemic, the epidemic had developed to level 5, the number of infected people was about 26, and the estimated loss was about 220 million yuan. The comprehensive cumulative foreground (CF) values of O1  ∼  O3 schemes were -1.34, -1.21, and -0.77, respectively, and the final CF values were -1.35, 0.01, and -0.08, respectively. The final CF value of O2 was significantly higher than the other two options. The household infection probability was the highest, which was 0.37 and 0.35 in Wuhan and China, respectively. Under the measures of home quarantine, the numbers of confirmed cases of COVID in China and Wuhan were 1.503 (95% confidential interval (CI) = 1.328  ∼  1.518) and 1.729 (95% CI = 1.107  ∼  1.264), respectively, showing good fits with the real data. On the 21st day after the quarantine measures were taken, the number of COVID across the country had an obvious peak, with the confirmed cases of 24495, and the model prediction value was 24085 (95% CI = 23988  ∼  25056). The incubation period 1/q was shortened from 8 days to 3 days, and the number of confirmed cases showed an upward trend. The peak period of confirmed cases was advanced, shortening the overall epidemic time. It showed that the prediction results of scenario deduction based on DBN were basically consistent with the actual development scenario and development status of the epidemic. It could provide corresponding decisions for the prevention and control of COVID based on the relevant parameters of the infectious disease dynamic model, which verified the rationality and feasibility of the scenario deduction method proposed in this study.

8.
Front Psychol ; 12: 696770, 2021.
Article in English | MEDLINE | ID: covidwho-1332141

ABSTRACT

Previous research has shown that sending personalized messages consistent with the recipient's psychological profile is essential to activate the change toward a healthy lifestyle. In this paper we present an example of how artificial intelligence can support psychology in this process, illustrating the development of a probabilistic predictor in the form of a Dynamic Bayesian Network (DBN). The predictor regards the change in the intention to do home-based physical activity after message exposure. The data used to construct the predictor are those of a study on the effects of framing in communication to promote physical activity at home during the Covid-19 lockdown. The theoretical reference is that of psychosocial research on the effects of framing, according to which similar communicative contents formulated in different ways can be differently effective depending on the characteristics of the recipient. Study participants completed a first questionnaire aimed at measuring the psychosocial dimensions involved in doing physical activity at home. Next, they read recommendation messages formulated with one of four different frames (gain, non-loss, non-gain, and loss). Finally, they completed a second questionnaire measuring their perception of the messages and again the intention to exercise at home. The collected data were analyzed to elicit a DBN, i.e., a probabilistic structure representing the interrelationships between all the dimensions considered in the study. The adopted procedure was aimed to achieve a good balance between explainability and predictivity. The elicited DBN was found to be consistent with the psychosocial theories assumed as reference and able to predict the effectiveness of the different messages starting from the relevant psychosocial dimensions of the recipients. In the next steps of our project, the DBN will form the basis for the training of a Deep Reinforcement Learning (DRL) system for the synthesis of automatic interaction strategies. In turn, the DRL system will train a Deep Neural Network (DNN) that will guide the online interaction process. The discussion focuses on the advantages of the proposed procedure in terms of interpretability and effectiveness.

SELECTION OF CITATIONS
SEARCH DETAIL